复古传奇私服详解:有色金属的基本知识

【矿业澳洲点评】有色金属是指铁、铬、锰三种金属以外的所有金属。中国在1958年将铁、铬、锰列入黑色金属;并将铁、铬、锰以外的64种金属列入有色金属。这64种有色金属包括:

铝 、镁、钾、钠、钙、锶、钡、铜、铅、锌、锡、钴、镍、锑、汞、镉、铋、金、银、铂、钌、铑、钯、锇、铱、铍、锂、铷、铯、钛、锆、铪、钒、铌、钽、钨、钼、镓、铟、铊、锗、铼、镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钪、钇、钍。

【铝】化学符号是Al,它的原子序数是13。铝元素在地壳中的含量仅次于氧和硅,居第三位,是地壳中含量最丰富的金属元素。在金属品种中,仅次于钢铁,为第二大类金属。

至19世纪末,铝才崭露头角,成为在工程应用中具有竞争力的金属,且风行一时。航空、建筑、汽车三大重要工业的发展,要求材料特性具有铝及其合金的独特性质,这就大大有利于这种新金属铝的生产和应用。铝的应用极为广泛。 

【铝的性质用途】

1.铝的密度很小,仅为2.7g/cm,虽然它比较软,但可制成各种铝合金,如硬铝、超硬铝、防锈铝、铸铝等。这些铝合金广泛应用于飞机、汽车、火车、船舶等制造工业。此外,宇宙火箭、航天飞机、人造卫星也使用大量的铝及其铝合金。例如,一架超音速飞机约由70%的铝及其铝合金构成。船舶建造中也大量使用铝,一艘大型客船的用铝量常达几千吨。

2.铝的导电性仅次于银、铜,虽然它的导电率只有铜的2/3,但密度只有铜的1/3,所以输送同量的电,铝线的质量只有铜线的一半。铝表面的氧化膜不仅有耐腐蚀的能力,而且有一定的绝缘性,所以铝在电器制造工业、电线电缆工业和无线电工业中有广泛的用途。

3.铝是热的良导体,它的导热能力比铁大3倍,工业上可用铝制造各种热交换器、散热材料和炊具等。

4.铝有较好的延展性(它的延展性仅次于金和银),在100 ℃~150 ℃时可制成薄于0.01mm的铝箔。这些铝箔广泛用于包装香烟、糖果等,还可制成铝丝、铝条,并能轧制各种铝制品。    

5.铝的表面因有致密的氧化物保护膜,不易受到腐蚀,常被用来制造化学反应器、医疗器械、冷冻装置、石油精炼装置、石油和天然气管道等。

6.铝粉具有银白色光泽(一般金属在粉末状时的颜色多为黑色),常用来做涂料,俗称银粉、银漆,以保护铁制品不被腐蚀,而且美观。

7.铝在氧气中燃烧能放出大量的热和耀眼的光,常用于制造爆炸混合物,如铵铝炸药(由硝酸铵、刚开一秒中变传奇木炭粉、铝粉、烟黑及其他可燃性有机物混合而成)、燃烧混合物(如用铝热剂做的炸弹和炮弹可用来攻击难以着火的目标或坦克、大炮等)和照明混合物(如含硝酸钡68%、铝粉28%、虫胶4%)。

8.铝热剂常用来熔炼难熔金属和焊接钢轨等。铝还用做炼钢过程中的脱氧剂。铝粉和石墨、二氧化钛(或其他高熔点金属的氧化物)按一定比率均匀混合后,涂在金属上,经高温煅烧而制成耐高温的金属陶瓷,它在火箭及导弹技术上有重要应用。

9.铝板对光的反射性能也很好,反射紫外线比银强,铝越纯,其反射能力越好,因此常用来制造高质量的反射镜,如太阳灶反射镜等。

10.铝具有吸音性能,音响效果也较好,所以广播室、现代化大型建筑室内的天花板等也采用铝。

11.耐低温,铝在温度低时,它的强度反而增加而无脆性,因此它是理想的用于低温装置材料,如冷藏库、冷冻库、南极雪上车辆、氧化氢的生产装置。

12.是两性氧化物

【铜矿石】

1.铜矿石的加工:工业上使用的铜有电解铜(含铜99.9%~99.95%)和精铜(含铜99.0%~99.7%)两种。前者用于电器工业上,用于制造特种合金、金属丝及电线。后者用于制造其他合金、铜管、铜板、轴等。 

炼铜的原料是铜矿石。铜矿石可分为三类:

(1)硫化矿,如黄铜矿(CuFeS2)、斑铜矿(Cu5FeS4)和辉铜矿(Cu2S)等。

(2)氧化矿,如赤铜矿(Cu2O)、孔雀石[Cu2(OH)2CO3]、蓝铜矿[2CuCO3·Cu(OH)2]、硅孔雀石(CuSiO3·2H2O)等。

(3)自然铜。铜矿石中铜的含量在1%左右(0.5%~3%)的便有开采价值,因为采用浮选法可以把矿石中一部分脉石等杂质除去,而得到含铜量较高(8%~35%)的精矿砂。

【铜矿石提炼】

火法炼铜:通过熔融冶炼和电解精火炼生产出阴极铜,也即电解铜,一般适于高品位的硫化铜矿。火法冶炼一般是先将含铜百分之几或千分之几的原矿石,通过选矿提高到20-30%,作为铜精矿,在密闭鼓风炉、反射炉、电炉或闪速炉进行造锍熔炼,产出的熔锍(冰铜)接着送入转炉进行吹炼成粗铜,再在另一种反射炉内经过氧化精炼脱杂,或铸成阳极板进行电解,获得品位高达99.9%的电解铜。该流程简短、适应性强,铜的回收率可达95%,但因矿石中的硫在造锍和吹炼两阶段作为二氧化硫废气排出,不易回收,易造成污染。近年来出现如白银法、诺兰达法等熔池熔炼以及日本的三菱法等、火法冶炼逐渐向连续化、自动化发展。

除了铜精矿之外,废铜做为精炼铜的主要原料之一,包括旧废铜和新废铜,旧废铜来自旧设备和旧机器,废弃的楼房和地下管道;新废铜来自加工厂弃掉的铜屑(铜材的产出比为50%左右),一般废铜供应较稳定,废铜可以分为:裸杂铜,品位在90%以上;黄杂铜(电线),含铜物料(旧马达、电路板)。由废铜和其他类似材料生产出的铜,也称为再生铜。

湿法炼铜:一船适于低品位的氧化铜,生产出的精铜称为电积铜。现代湿法冶炼有硫酸化焙烧-浸出-电积,浸出-萃取-电积,细菌浸出等法,适于低品位复杂矿、氧化铜矿、含铜废矿石的堆浸、槽浸选用或就地浸出。湿法冶炼技术正在逐步推广,预计本世纪末可达总产量的20%,湿法冶炼的推出使铜的冶炼成本大大降低。

比较火法和湿法两种铜的生产工艺,有如下特点:(1)后者的冶炼设备更简单,但杂质含量较高,是前者的有益补充。(2)后者有局限性,受制于矿石的品位及类型。(3)前者的成本要比后者高。

【铜的性质及用途】

1.电气工业

※ 电力输送

电力输送中需要大量消耗高导电性的铜,主要用于动力申.线电缆、汇流排、变压器、开关、接插元件和联接器等。我国在过去一段时间内,由于铜供不应求,考虑到铝的比重只有铜的30%,在希望减轻重量的架空高压输电线路中曾采取以铝代铜的措施。目前从环境保护考虑,空中输电线将转为铺设地下电缆。在这种情况下,铝与铜相比,存在导电性差和电缆尺寸较大的缺点,而相形见绌。同样的原因,以节能高效的铜绕组变压器,取代铝绕组变压器,也是明智的选择。

※ 电机制造 

在电机制造中,广泛使用高导电和高强度的铜合金。主要用铜部位是定子、转子和轴头等。在大型电机中,绕组要用水或氢气冷却,称为双水内冷或氢气冷却电机,这就需要大长度的中空导线。 

电机是使用电能的大户,约占全部电能供应的60%。一台电机运转累计电费很高,一般在最初工作500小时内就达到电机本易的成本,一年内相当于成本的4~16倍,在整个工作寿命期间可以达到成本的200倍。电机效率的少量提高,不但可以节能;而且可以获得显著的经济效益。开发和应用高效电机,是当前世界上的一个热门课题。由于电机内部的能量消耗,主要来源于绕组的电阻损耗;因此,增大铜线截面是发展高效电机的一个关键措施。近年来己率先开发出来的一些高效电机与传统电机相比,铜绕组的使用量增加25~ 100%。

目前,美国能源部正在资助一个开发项目,拟采用铸入铜的技术生产电机转子。 

※ 通讯电缆

80年代以来,由于光纤电缆载流容量大等优点,在通讯干线上不断取代铜电缆,而迅速推广应用。但是,把电能转化为光能,以及输入用户的线路仍需使用大量的铜。随着通讯事业的发展,人们对通讯的依赖越来越大,对光纤电缆和铜电线的需求都会不断增加。

※ 住宅电气线路

近年来,随着我国人民生活水平提高,家电迅速普及,住宅用电负荷增长很快。1987年居民用电量为 269.好私服网站6亿度(1度=1千瓦·小时),10后年的1996年猛升到1131亿度,增加3.2倍。尽管如此,与发达国家相比仍有很大差距。例如,1995年美国的人均用电量是我国的14.6倍,日本是我国的8.6倍。我国居民用电量今后仍有很大发展。预计从1996年到2005年,还要增长1.4倍。

2.电子工业

电子工业是新兴产业,在它蒸蒸日上的发展过程中,不断开发出铜的新产品和新的应用领域。目前它的应用己从电真空器件和印刷电路,发展到微电子和半导体集成电路中。 

※ 电真空器件

电真空器件主要是高频和超高频发射管、波导管、磁控管等,它们需 要高纯度无氧铜和弥散强化无氧铜。

※ 印刷电路

铜印刷电路,是把铜箔作为表面,粘贴在作为支撑的塑料板上;用照相的办法把电路布线图印制在铜版上;通过浸蚀把多余的部分去掉而留下相互连接的电路。然后,在印刷线路板上与外部的连接处冲孔,把分立元件的接头或其它部分的终端插入,焊接在这个口路上,这样一个完整的线路便组装完成了。如果采用浸镀法,所有接头的焊接可以一次完成。这样,对于那些需要精细布置电路的场合,如无线电、电视机,计算机等,采用印刷电路可以节省大量布线和固定回路的劳动;因而得到广泛应用,需要消费大量的铜箔。此外,在电路的连接中还需用各种价格低廉、熔点低、流动性好的铜基钎焊材料。

※ 集成电路

微电子技术的核心是集成电路。集成电路是指以半导体晶体材料为基片(芯片),采用专门的工艺技术将组成电路的元器件和互连线集成在基片内部、表面或基片之上的微小型化电路。这种微电路在结构上比最紧凑的分立元件电路在尺寸和重量上小成千上万倍。它的出现引起了计算机的巨大变革,成为现代信息技术的基础,IBM(国际商私服合击业机器公司),己采用铜代替硅芯片中的铝作互连线,取得了突破性进展。这种用铜的新型微芯片,可以获得30%的效能增益,电路的线尺寸可以减小到0.12微米,可使在单个芯片上集成的晶体管数目达到200万个。这就为古老的金属铜,在半导体集成电路这个最新技术领域中的应用,开创了新局面。   

※ 引线框架

为了保护集成电路或混合电路的正常工作,需要对它进行封装;并在封装时,把电路中大量的接头从密封体内引出来。这些引线要求有一定的强度,构成该集成封装电路的支承骨架,称为引线框架。实际生产中,为了高速大批量生产,引线框架通常在一条金属带上按特定的排列方式连续冲压而成。框架材料占集成电路总成本的1/3~ 1/4,而且用量很大;因此,必须要有低的成本。

 

铜合金价格低廉,有高的强度、导电性和导热性,加工性能、针焊性和耐蚀性优良,通过合金化能在很大范围内控制其性能,能够较好地满足引线框架的性能要求,己成为引线框架的一个重要材料。它是目前铜在微电子器件中用量最多的一种材料。

3.能源及石化工业

※ 能源工业

火力及原子能发电都要依靠蒸气作功。锅炉发生蒸气- 蒸气推动汽轮机作功- 作功后的蒸汽送至冷凝器- 冷却成水- 回到锅炉重新变成蒸汽。其间主冷凝器由管板和冷凝管组成。由于铜导热性好并能抗水的腐蚀,所以它们均使用锅黄铜、铝黄铜或白铜制造。根据资料介绍,每万千瓦装机容量需要5吨冷凝管。一个60万千瓦的发电厂就需要300吨冷凝管材。太阳能的利用也要使用许多铜管。

例如:英国伦敦附近某旅馆的一个游泳池,装备了太阳能加热器,在夏季可以将水温保持在18~24℃。在该太阳能加热器中含有784磅(356公斤)铜管。

※ 石化工业

铜和许多铜合金,在水溶液、盐酸等非氧化性酸、有机酸(如:醋酸、柠檬酸、脂肪酸、乳酸、草酸等)、除氨以外的各种碱及非氧化性的有机化合物(如:油类、酚、醇等)中,均有良好的耐蚀性;因而,在石化工业中大量用于制造接触腐蚀性介质的各种容器、管道系统、过滤器、泵和阀门等器件。还利用它的导热性,制造各种蒸发器、热交换器和冷凝器。由于铜的塑性很好,特别适合于制造现代化工工业中结构错综复杂、铜管交叉编制的热交换器。此外在石油精炼工厂中都使用青铜生产工具;原回是冲击时不迸出火花,可以防止火灾发生。   

※ 海洋工业

海洋占地球表面面积70%以上,合理地开发利用海洋资源日益受到人们的重视。海水中含确容易造成腐蚀的氯离子,钢铁、铝、甚至不锈钢等许多工程金属材料均不耐海水腐蚀。此外在这些材料,以及木材、玻璃等非金属材料的表面上还会形成海洋生物污损。铜则一枝独秀,不但耐海水腐蚀;而且溶入水中的铜离子有杀菌作用,可以防止海洋生物污损。因而,铜和铜合金是海洋工业中十分重要的材料,业已在海水淡化工厂、海洋采油采气平台、以及其它海岸和海底设施中广泛应用。例如,海水淡化过程中使用的管路系统、泵和阀门,以及采油采气平台上使用的设备,包括飞溅区和水下用的螺栓、钻孔,抗生物污损包套、泵阀和管路系统等等。关于铜和铜合金在船舶中的应用情况,将在后节中介绍。 

4.交通工业

※ 船舶

由于良好的耐海水腐蚀性能,许多铜合金,如:铝青铜、锰青铜、铝黄铜、炮铜(锡锌青铜)、白铜以及镍铜合金(蒙乃尔合金)己成为造船的标准材料。一般在军舰和商船的自重中,铜和铜合金占2~3%。军舰和大部分大型商船的螺旋桨都用铝青铜或黄铜制造。传奇私服合击版大船的螺旋桨每支重20~25吨。伊丽莎白皇后号和玛丽皇后号航母的螺旋桨每支重达35吨。大船沉重的尾轴常用”海军上将”炮铜,舵和螺旋浆的锥形螺栓也用同样材料。引擎和锅炉房内也大量用铜和铜合金。世界上第一艘核动力商船,使用了30吨白铜冷凝管。近来用铝黄铜管作油罐的大型加热线圈。在10万吨级的船上就有12个这种储油罐,相应的加热系统规模相当大。船上的电气设备也很复杂,发动机、电动机、通讯系统等几乎完全依靠铜和铜合金来工作。大小船只的船舱内经常用铜和铜合金来装饰。甚至木制小船,也最好用铜合金(通常是硅青铜)的螺丝和钉子来固定木结构,这种螺丝可以用滚轧大量生产出来。为了防止船壳被海生物污损影响航行,过去经常采用包覆铜加以保护;现在,则普遍用刷含铜油漆的办法来解决。二次世界大战中,为御防德国磁性水雷对舰船的袭击,曾发展了抗磁性水雷装置,在钢船壳周围附一圈铜带,通上电流以中和船的磁场,这样就可以不引爆水雷。从1944年以后,盟军的所有船只,共计约18,000艘,都装上了这种去磁装置而得到了保护。一些大型主力舰为此需用大量的铜,例如其中一艘用去铜线长28英里,重约30吨。 

※ 汽车

汽车用铜每辆10~21公斤,随汽车类型和大小而异,对于小轿车约占自重的6~9%。铜和铜合金主要用于散热器、制动系统管路、液压装置、齿轮、轴承、刹车摩擦片、配电和电力系统、垫圈以及各种接头、配件和饰件等。其中用铜量比较大的是散热器。现代的管带式散热器,用黄铜带焊接成散热器管子,用薄的铜带折曲成散热片。

近年来为了进一步提高铜散热器的性能,增强它对铝散热器的竞争力,作 了许多改进。在材质方面,向铜中添加微量元素,以达到在不损失导热性的前提下,提高其强度和软化点,从而减薄带材的厚度,节省用铜量;在制造工艺方面,采用高频或激光焊接铜管,并用铜钎焊代替易受铅污染的软焊组装散热器芯体。这些努力的结果示于表6.2,与钎焊铝散热器相比,在相同的散热条件下,即在相同的空气和冷却剂的压力降下,新型铜散热器的重量更轻,尺寸显著缩小;再加上铜的耐蚀性好、使用寿命长,铜散热器的优势就更明显。

※ 铁路 

铁路的电气化对铜和铜合金的需要量很大。每公里的架空导线需用2吨以上的异型铜线。为了提高它的强度,往往加入少量的铜(约1%)或银。此外,列车上的电机、整流器、以及控制、制动、电气和信号系统等都要依靠铜和铜合金来工作。

※ 飞机

飞机的航行也离不开铜。例如:飞机中的配线、液压、冷却和气动系统需使用铜材,轴承保持器和起落架轴承采用铝青铜管材,导航仪表应用抗磁铜合金,众多仪表中使用破铜弹性元件等等。

※ 机械工程

几乎在所有的机器中都可以找到铜制品部件。除了电机、电路、油压系统、气压系统和控制系统中大量用铜以外,种类繁多用黄铜和青铜制造的传动件和固定件,如齿轮、蜗轮、蜗杆、联结件、紧固件、扭拧件、螺钉、螺母等,比比皆是。几乎在所有作机械相对运动的部件之间,都要使用减磨铜合金制作的轴承或轴套,特别是万吨级的大型挤压机、锻压机的缸套、滑板几乎都用青铜制成,铸件重量可达数吨。许多弹性元件,几乎都选用硅青铜和锡青铜作为材料。焊接工具、压铸模具等更离不开铜合金,如此等等。

※ 冶金设备

冶金工业是消耗电能的大户,素有”电老虎”之称。在冶金厂的建设中通常必须要有一个依靠铜来进行工作的庞大的输、配电系统和电力运转设备。此外,在火法冶金中,连续铸造技术已占据主导地位,其中的关键部件一结晶器,大都采用铬铜、银铜等高强度和高导热性的铜合金。电冶金中的真空电弧炉和电渣炉水冷坩埚使用铜管材制造,各种感应加热的感应线圈都是用铜管或异型铜管绕制而成,内中通水冷却。

※ 合金添加剂 

铜是钢铁和铝等合金中的重要添加元素。少量铜(0.2~0.5%)加入低合金结构用钢中,可以提高钢的强度及耐大气和海洋腐蚀性能。在耐蚀铸铁和不锈钢中加入铜,可以进一步提高它们的耐蚀性。含铜30%左右的高镍合金是著名的高强度耐蚀”蒙乃尔合金”,在核工业中广泛使用。

在许多高强度铝合金中都含有铜。通过淬火——时效热处理,在合金中析出弥散分布的细小颗粒,而显著提高其强度,称为时效硬化铝合金。其中著名的有杜拉铝或称硬铝,它是一种含铜、锰、镁的铝合金,是制造飞机和火箭的重要结构材料。

【钨】化学符号:W, 是一种化学元素,原子序数是74,是非常硬、钢灰色至白色的过渡金属。含有钨的矿物有黑钨矿和白钨矿等。钨的物理特征非常强,尤其是熔点非常高,是所有非合金金属中最高的。纯钨主要用在电器和电子设备,它的许多化合物和合金也有很多其它用途(最常见的有灯泡的钨丝,在X射线管中以及高温合金)。

钨的最稳定的三种同位素都有轻微的放新开传奇合击私服射性。

纯钨是钢灰色至锡白色的坚硬金属,非常纯的钨可以拉锯锯开(纯钨很脆,不易加工)。钨的加工方法有锻造、拉伸和冲击。在所有金属中钨的熔点最高(3415℃)蒸汽压最低,在抗张强度最高(1650℃时)。钨的防腐性能非常好,大多数无机酸对其的侵蚀都很小。在空气里它的表面会形成一层保护性氧化物,但是在高温下会完全氧化。在钢里加入少量钨可以大为增高钢的硬度。

钨的应用非常广泛,最常见的是碳化钨(WC)硬质合金。这样的硬质合金用在金属加工、采矿、采油和建筑工业中作为耐用金属。此外在电灯泡和真空管中钨丝的应用也很广。钨还常用作电极。钨可以拉成很细的丝,而且熔点非常高。它的其它应用包括:

由于钨的熔点非常高,所以常用于航空和高温环境,例如电子、加热和焊接(E.G. 钨极气体保护电弧焊)。

钨非常坚硬,非常紧密,因此制作重金属合金非常理想,这样的合金用在装甲、散热片和高密度的应用上例如压重物、平衡重物、船和飞机的压重物等。

由于钨非常紧密,飞镖往往含80%至97%的钨。

高速钢含钨,有时含18%的钨。

制造涡轮机片、耐用部分和保护层的高温合金含钨(哈氏合金、钨铬钴合金等)。

在子弹中使用钨来取代铅。

钨的化合物被用作催化剂、无机颜色。二硫化钨是高温润滑剂,它在500 °C依然稳定。

由于钨的涨性和硅酸硼玻璃类似,所以人们用它进行玻璃/金属密封。

钨与镍、铁和钴的合金被用来制作重合金,这样的重合金用在动能弹中取代贫铀。

在集成电路中钨是前路之间的连接物。在二氧化硅绝缘体中侵蚀接触孔,注入钨,磨平来连接三极管。典型的接触孔可以小到65纳米。

碳化钨是最硬的物质之一,被用在机器工具和磨料中。碳化钨是磨具和转具中最常见的材料,往往也是最好的材料。

在放射医学中钨是屏蔽物质。运输氟脱氧葡萄糖一般用钨容器,因为氟脱氧葡萄糖中的高能量令氟-18铅容器无法使用。

其它:氧化钨被用在陶瓷釉中,钙或镁钨常用在荧光粉中。在核物理和核医学中钨晶体被用作闪烁探测器。钨被用作X射线目标和在电子炉中作为加热器。含钨的盐被用在化学和皮革工业中。青铜色的氧化钨被用网通传奇私服网站在绘画中。由于它的低敏感性碳化钨被用作首饰,此外由于它非常硬它不会像其它擦光的金属被划痕。有些乐器的铉使用钨丝。

【钼的性质及用途】钼主要用于钢铁工业,其中的大部分是以工业氧化钼压块后直接用于炼钢或铸铁,少部分熔炼成钼铁、钼箔片、后再用于炼钢。低合金钢中的钼含量不大于1%,但这方面的消费却占钼总消费量的50%左右。不锈钢中加入钼,能改善钢的耐腐蚀性。在铸铁中加入钼,能提高铁的强度和耐磨性能。含钼18%的镍基超合金具有熔点高、密度低和热胀系数小等特性,用于制造航空和航天的各种高温部件。

金属钼在电子管、晶体管和整流器等电子器件方面得到广泛应用。氧化钼和钼酸盐是化学和石油工业中的优良催化剂。二硫化钼是一种重要的润滑剂,用于航天和机械工业部门。钼是植物所必需的微量元素之一,在农业上用作微量元素化肥。

纯钼丝用于高温电炉和电火花加工还有线切割加工;钼片用来制造无线电器材和X射线器材;钼耐高温。

钼坩埚烧蚀,主要用于火炮内膛、火箭喷口、电灯泡钨丝支架的制造。合金钢中加钼可以提高弹性极限、抗腐蚀性能以及保持永久磁性等,钼是植物生长和发育中所需七种微量营养元素中的一种,没有它,植物就无法生存。动物和鱼类与植物一样,同样需要钼。              

【铂的性质及用途】铂是一种化学元素,俗称白金。它的化学符号是Pt,它的原子序数是78。在自然界中常以自然矿状态存在,极为分散。多用原铂矿富积、萃取而获得。由西班牙人乌罗阿(Ulloa)和武德(Wood)分别于1935年和1941年发现。

铂由于有很高的化学稳定性(除王水外不溶于任何酸,碱)和催化活性,因此,应用很广。可与钴合制强磁体。多用来制造耐腐蚀的化学仪器,如各种反应器皿、蒸发皿、坩埚、电极、铂网等,铂和铂铑合金常用作热电偶,来测定1200~1750℃的温度。还可用于制造首饰。铂在氢化、脱氢、异构化、环化、脱水、脱卤、氧化、裂解等化学反应中均可作催化剂。在医药中,可做抗癌药。

铂和它的同系金属——钌、铑、钯、锇、铱和金一样,几乎完全成单质状态存在于自然界中。它们在地壳中的含量也和金相近,且它们的化学惰性和金比较也不相上下,但是人们发现并使用它们却远在金后。它们在自然界中的极度分散和它们的高熔点,可能是造成这种状况的原因。至今发现的最大的天然铂块是9.6千克。铂的熔点1772℃,钌的熔点2310℃,铑的熔点1966℃,钯的熔点1552℃,锇的熔点2054℃,铱的熔点2410℃,而金的熔点是1063℃。南美洲古代印第安人却早已经利用铂和金的合金制成装饰品。由于铂在铂系矿物中的含量比其他元素的含量大的多,因而它是铂系元素中首先被发现的。

在欧洲首先提到铂的可能是法国矿物学家斯卡里吉在1557年发表的著述中。他讲到所有金属都能熔化,但有一种墨西哥和达里南Darian(今巴拿马)矿里的一种金属不能熔化。这可以认为是指铂。

18世纪中叶,南美洲的铂矿传到欧洲一些学者手中,他们对铂进行了研究。不少学者认为铂不是一种纯金属,而是金、铁和汞的合金,还有人认为它是一种半金属。1752年瑞典化学家谢斐尔肯定它是一种独立的金属,称它为Aurum Album(白金)。 

1789年拉瓦锡发表他制定的元素表,铂被列入其中。现今铂的拉丁名称是Platinum,元素符号是Pt。

【镍】镍化学符号为Ni,原子序数为28,具磁性,属过渡金属。近似银白色、硬而有延展性并具有铁磁性的金属元素,它能够高度磨光和抗腐蚀。溶于硝酸后,呈绿色。主要用于合金(如镍钢和镍银)及用作催化剂(如拉内镍,尤指用作氢化的催化剂) [nickel]——元素符号Ni。

镍是具有铁磁性的金属元素,它能够高度磨光和抗腐蚀。主要用于合金(如镍钢和镍银)及用作催化剂(如拉内镍,尤指用作氢化的催化剂) ,可用来制造货币等,镀在其他金属上可以防止生锈。可用于电镀制作搪塑(旋转) 成型的模具。 

镍铬合金:主要用来制造不锈钢和其他抗腐蚀合金,如镍钢、镍铬钢及各种有色金属合金,含镍成分较高的铜镍合金,就不易腐蚀。也作加氢催化剂和用于陶瓷制品、特种化学器皿、电子线路、玻璃着绿色以及镍化合物制备等刚开传奇私服等。

镍在地壳中含量不小,大于常见金属铅、锡等,但明显比铁少得多,而且镍和铁的熔点不相上下,因此注定它比铁发现得晚。17世纪末,欧洲人开始注意镍砒(砷)矿。当时德国用它来制造青色玻璃,采矿工人称它为kupfernickel。“kupfer”在德文中是“铜”;“nickel”是骂人的话,大意是“骗人的小鬼”。因此这一词可以义译为“假铜”。当时人们认为它是铜和砷的混合物。

瑞典化学家克隆斯特研究了这个矿物,他得到了少量与铜不同的金属。他在1751年发表研究报告,认为这是一种新金属,就称它为nickel,这也就是镍的拉丁名称niccolum和符号Ni的来源。镍在欧洲被发现后,德国人首先把它掺入铜中,制成所谓日耳曼银,或称德国银,也就是我国的白铜。      

【钽】钽的质地十分坚硬,硬度可以达到6-6.5。它的熔点高达2996℃ ,仅次于钨和铼,位居第三。钽富有延展性,可以拉成细丝式制薄箔。其热膨胀系数很小,每升高一摄氏度只膨胀百分之六点六。除此之外,它的韧性很强,比铜还要优异。

钽还有非常出色的化学性质,具有极高的抗腐蚀性。无论是在冷和热的条件下,对盐酸、浓硝酸及“王水”都不反应。但钽在热的浓硫酸中能被腐蚀,在150℃以下,钽不会被浓硫酸腐蚀,只有在高于此温度才会有反应,在175度的浓硫酸中1年,被腐蚀的厚度为0.0004毫米,将钽放入200℃的硫酸中浸泡一年,表层仅损伤0.006毫米。在250度时,腐蚀速度有所增加,为每年被腐蚀的厚度为0.116毫米,在300度时,被腐蚀的速度则更加快,浸泡1年,表面被腐蚀1.368毫米。在发烟硫酸(含15%的SO3)腐蚀速度比浓硫酸中更加严重,在130度的该溶液里浸泡1年,表面被腐蚀的厚度为15.6毫米。钽在高温下也会被磷酸腐蚀,但该反应一般在150度以上才发生,在250度的85%的磷酸中,浸泡1年,表面被腐蚀20毫米,另外,钽在氢氟酸和硝酸的混酸中能迅速溶解,在氢氟酸中也能被溶解。但是钽更害怕强碱,在110度40%浓度的烧碱溶液里,钽会被迅速溶解,在同样浓度的氢氧化钾溶液中,只要100度就会被迅速溶解。除上面所述情况外,一般的无机盐在150度以下一般不能腐蚀钽。实验证明,钽在常温下,对碱溶液、氯气、溴水、稀硫酸以及其他许多药剂均不起作用,仅在氢氟酸和热浓硫酸作用下有所反应。这样的情况在金属中是比较罕见的。

但高温下,钽表面的氧化膜被破坏,因此能与多种物质反应,常温下钽能与氟反应。在150度时,钽对氯溴碘均呈惰性,在250度时,钽对干燥的氯气仍然有抗腐蚀能力,在含有水蒸气的氯气中加热到4热血传奇sf00度,仍然能保持光亮,在500度则开始被腐蚀,在300度以上钽与溴反应,对碘蒸汽则当温度达到赤热之前均呈惰性。氯化氢在410度时和钽反应,生产五氯化物,溴化氢则在375度与钽反应。当加热到200度或者更低的温度下,S能与Ta作用,碳及烃类在800-1100度与钽作用。

钽所具有的特性,使它的应用领域十分广阔。在制取各种无机酸的设备中,钽可用来替代不锈钢,寿命可比不锈钢提高几十倍。此外,在化工、电子、电气等工业中,钽可以取代过去需要由贵重金属铂承担的任务,使所需费用大大降低。钽被制造成了电容装备到军用设备中。美国的军事工业异常发达,是世界最大军火出口商。世界上钽金属的产量一半被用在钽电容的生产上,美国国防部后勤署则是钽金属最大的拥有者,曾一度买断了世界上三分之一的钽粉。

钽在酸性电解液中形成稳定的阳极氧化膜,用钽制成的电解电容器,具有容量大、体积小和可靠性好等优点,制电容器是钽的最重要用途,70年代末的用量占钽总用量2/3以上。钽也是制作电子发射管、高功率电子管零件的材料。

钽制的抗腐蚀设备用于生产强酸、溴、氨等化学工业。金属钽可作飞机发动机的燃烧室的结构材料。

钽钨、钽钨铪、钽铪合金用作火箭、导弹和喷气发动机的耐热高强材料以及控制和调节装备的零件等。钽易加工成形,在高温真空炉中作支撑附件、热屏蔽、加热器和散热片等。钽可作骨科和外科手术材料。

碳化钽用于制造硬质合金。钽的硼化物、硅化物和氮化物及其合金用作原子能工业中的释热元件和液态金属包套材料。氧化钽用于制造高级光学玻璃和催化剂。1981年钽在美国各部门的消费比例约为:电子元件73%,机械工业19%,交通运输6%,其他2%。    

【锗的性质及用途】 锗化学符号是Ge,它的原子序数是32,是一种灰白色的类金属。锗的性质与锡类似。锗最常用在半导体之中,用来制造晶体管。1886年,德国的文克勒在分析硫银锗矿时,发现了锗的存在;后由硫化锗与氢共热,制出了锗。

锗具有半导体性质。对固体物理和固体电子学的发展有重要作用。锗的熔密度5.32克/厘米3,锗可能性划归稀散金属,锗化学性质稳定,常温下不与空气或水蒸汽作用,但在600~700℃时,很快生成二氧化锗。与盐酸、稀硫酸不起作用。浓硫酸在加热时,锗会缓慢溶解。在硝酸、王水中,锗易溶解。碱溶液与锗的作用很弱,但熔融的碱在空气中,能使锗迅速溶解。锗与碳不起作用,所以在石墨坩埚中熔化,不会被碳所污染。锗有着良好的半导体性质,如电子迁移率、空穴迁移率等等。锗的发展仍具有很大的潜力。现代工业生产的锗,主要来自铜、铅、锌冶炼的副产品。

高纯度的锗是半导体材料。从高纯度的氧化锗还原,再经熔炼可提取而得。掺有微量特定杂质的锗单晶,可用于制各种晶体管、整流器及其他器件。锗的化合物用于制造荧光板及各种高折光率的玻璃。

锗单晶可作晶体管,是第一代晶体管材料。锗材用于辐射探测器及热电材料。高纯锗单晶具有高的折射系数,对红外线透明,不透过可见光和紫外线,可作专透红外光的锗窗、棱镜或透镜。锗和铌的化合物是超导材料。二氧化锗是聚合反应的催化剂,含二氧化锗的玻璃有较高的折射率和色散性能,可作广角照相机和显微镜镜头,三氯化锗还是新型光纤材料添加剂。 

【锂】Li是一种银白色的金属元素,质软,是密度最小的金属。用于原子反应堆、制轻合金及电池等。锂和它的化合物并不像其他的碱金属那么典型,因为锂的电荷密度很大并且有稳定的氦型双电子层,使得锂容易极化其他的分子或离子,自己本身却不容易受到极化。这一点就影响到它和它的化合物的稳定性。

【锂的工业用途】

将质量数为6的同位素(6Li)放于原子反应堆中,用中子照射,可以得到氚。氚能用来进行热核反应,有着重要的用途。锂主要以硬脂酸锂的形式用作润滑脂的增稠剂。这种润滑剂兼有高抗水性、耐高温和良好的低温性能。锂化物用于陶瓷制品中,以起到助溶剂的作用。在冶金工业中也用来作脱氧剂或脱氯剂,以及铅基轴承合金。锂也是铍、镁、铝轻质合金的重要成分。

锂与生活日用息息相关,个人携带的笔记本电脑、手机、蓝牙耳机等数码产品中应用的锂离子电池中就含有丰富的锂元素。锂离子电池是高能储存介质,由于锂离子电池的高速发展,衍生带动了锂矿、碳酸锂等公司业务的蓬勃发展。金属锂电池在军用领域也有应用。

锂在发现后一段相当长的时间里,一直受到冷落,仅仅在玻璃、陶瓷和润滑剂等部门,使用了为数不多的锂的化合物。

锂早先的主要工业用途是以硬脂酸锂的形式用作润滑剂的增稠剂,锂基润滑脂兼有高抗水性,耐高温和良好的低温性能。如果在汽车的一些零件上加一次锂润滑剂,就足以用到汽车报废为止。

在冶金工业上,利用锂能强烈地和氧、氮、氯、硫等物质反应的性质,充当脱氧剂和脱硫剂。在铜的冶炼过程中,加入十万分之一到万分之一的锂,能改善铜的内部结构,使之变得更加致密,从而提高铜的导电性。锂在铸造优质铜铸件中能除去有害的杂质和气体。在现代需要的优质特殊合金钢材中,锂是清除杂质最理想的材料。

1kg锂燃烧后可释放42998kJ的热量,因此锂是用来作为火箭燃料的最佳金属之一。1kg锂通过热核反应放出的能量相当于二万多吨优质煤的燃烧。若用锂或锂的化合物制成固体燃料来代替固体推进剂,用作火箭、导弹、宇宙飞船的推动力,不仅能量高、燃速大,而且有极高的比冲量,火箭的有效载荷直接取决于比冲量的大小。

 

如果在玻璃制造中加入锂,锂玻璃的溶解性只是普通玻璃的1/100(每一普通玻璃杯热茶中大约有万分之一克玻璃),加入锂后使玻璃成为“永不溶解”,并可以抗酸腐蚀。

纯铝太软,当在铝中加入少量的锂、镁、铍等金属熔超变合击私服成合金,既轻便,又特别坚硬,用这种合金来制造飞机,能使飞机减轻2/3的重量,一架锂飞机两个人就可以抬走。锂-铅合金是一种良好的减摩材料。

真正使锂成为举世瞩目的金属,还是在它的优异的核性能被发现之后。由于它在原子能工业上的独特性能,人称它为“高能金属”。

【锂的商业用途】

锂电池是二十世纪三、四十年代才研制开发的优质能源,它以开路电压高,比能量高,工作温度范围宽,放电平衡,自放电子等优点,已被广泛应用于各种领域,是很有前途的动力电池。用锂电池发电来开动汽车,行车费只有普通汽油发动机车的1/3。由锂制取氚,用来发动原子电池组,中间不需要充电,可连续工作20年。要解决汽车的用油危机和排气污染,重要途径之一就是发展向锂电池这样的新型电池。

锂化合物早先的重要用途之一是用于陶瓷制品中,特别是用于搪瓷制品中,锂化合物的主要作用是作助熔剂。

氟化锂对紫外线有极高的透明度,用它制造的玻璃可以洞察隐蔽在银河系最深处的奥秘。锂玻璃可用来制造电视机显像管。

二战期间,美国飞行员备有轻便应急的氢气源—氢化锂丸。当飞机失事坠落在水面时,只要一碰到水,氢化锂就立即溶解释放出大量的氢气,使救生设备充气膨胀。

【镁】的化学符号是Mg,它的原子序数是12,是一种银白色的碱土金属。镁是在地球的地壳中第八丰富的元素,约占2%的质量,也是宇宙中第九多元素。天然含镁的矿石有菱镁矿、白云石、光卤石等。镁离子也是海水中的重要成分。镁也存在于人体和植物中,它是叶绿素的主要组分。

镁属于元素周期表上的IIA族碱土金属元素,相对原子质量为24.305。具有银白色光泽,略有延展性。镁的密度小,离子化倾向大。

在空气中,镁的表面会生成一层很薄的氧化膜,使空气很难与它反应。镁和醇、酸、热水反应能够生成氢气。粉末或带状的镁在空气中燃烧时会发出强烈的白光。在氮气中进行高温加热,镁会生成氮化镁(Mg3N2);镁也可以和卤素发生强烈反应;镁也能直接与硫化合。镁的检测可以用EDTA滴定法分析。

镁是用途第三广泛的结构材料,仅次于铁和铝。镁的主要用途是:制造铝合金,压模铸造(与锌形成合金),钢铁生产中脱硫处理,Kroll法制备钛。

金属镁可用于熔融盐金属热还原法以制取稀有金属。

由于镁比铝轻,含5%-30%镁的铝镁合金质轻,有良好的机械性能,广泛在航空、航天上使用。如2015年底美国加州大学洛杉矶校区工程系研究院就公布最新科研成果:以约百分之八十六镁配以约百分之十四纳微米级别的碳化硅制造出新的质轻坚硬金属纳米复合材料,未来将应用于航空、航天及电子手提平板方面。

另外利用镁易于氧化的性质,可用于制造许多纯金属的还原剂。也可用于闪光灯、吸气器、烟花、照明弹等。

加微量镁于熔融生铁中,冷却后得到球墨铸铁,比普通铁坚韧耐磨。

从18世纪初开始,苦卤(氯化镁,MgCl2)和泻盐(硫酸镁,MgSO4·7H2O)就已作为药品得到了使用。

【钛】化学符号Ti,原子序数22,在化学元素周期表中位于第4周期、第IVB族。是一种银白色的过渡金属,其特征为重量轻、强度高、具金属光泽,耐湿氯气腐蚀。但钛不能应用于干氯气中,即使是温度0℃以下的干氯气,也会发生剧烈的化学反应,生成四氯化钛,再分解生成二氯化钛,甚至燃烧。只有当氯气中的含水量高于0.5%的时候,钛在其中才能保持可靠的稳定性。

 

钛被认为是一种稀有金属,这是由于在自然界中其存在分散并难于提取。但其相对丰富,在所有元素中居第十位。 钛的矿石主要有钛铁矿及金红石,广布于地壳及岩石圈之中。钛亦同时存在于几乎所有生物、岩石、水体及土壤中。从主要矿石中萃取出钛需要用到克罗尔法 或亨特法。钛最常见的化合物是二氧化钛,可用于制造白色颜料。其他化合物还包括四氯化钛(TiCl4)(作催化剂和用于制造烟幕作空中掩护)及三氯化钛(TiCl3)(用于催化聚丙烯的生产)。

地球表面十公里厚的地层中,含钛达千分之六,比铜多61倍,在地壳中的含量排第十位(地壳中元素排行:氧、硅、铝、铁、钙、钠、钾、镁、氢、钛),随便从地下抓起一把泥土,其中都含有千分之几的钛,世界上储量超过一千万吨的钛矿并不稀罕。

地球上有成亿吨的砂石,钛和锆这两种比砂石重的矿物,就混杂在砂石中,经过海水千百万年昼夜不停地淘洗,把比较重的钛铁矿和锆英砂矿冲在一起,在漫长的海岸边,形成了一片一片的钛矿层和锆矿层。这种矿层是一种黑色的砂子,通常有几厘米到几十厘米厚。

钛没有磁性,用钛建造的核潜艇不必担心磁性水雷的攻击。

钛能与铁、铝、钒或钼等其他元素熔成合金,造出高强度的轻合金,在各方面有着广泛的应用,包括航天(喷气发动机、导弹及航天器)、军事、工业程序(化工与石油制品、海水淡化及造纸)、汽车、农产食品、医学(义肢、骨科移植及牙科器械与填充物)、运动用品、珠宝及手机等等。

钛最有用的两个特性是,抗腐蚀性,及金属中最高的强度-重量比[7]。在非合金的状态下,钛的强度跟某些钢相若,但却还要轻45%。有两种同素异形体和五种天然的同位素,分别为:46Ti(8.25%)、47Ti(7.44%)、48Ti(73.72%)49Ti(5.41%)50Ti(5.18%)。

由于钛具有熔点高、比重小、比强度高、韧性好、抗疲劳、耐腐蚀、导热系数低、高低温度耐受性能好、在急冷急热条件下应力小等特点,其商业价值在二十世纪五十年代开始被人们认识,被应用于航空、航天等高科技领域。随着不断向化工、石油、电力、海水淡化、建筑、日常生活用品等行业推广,钛金属日益被人们重视,被誉为“现代金属”和“战略金属”,是提高国防装备水平不可或缺的重要战略物资。

衡量一个国家钛工业规模有两个重要指标:海绵钛产量和钛材产量,其中海绵钛产量反映原料生产能力,钛材产量反映的是深加工能力。钛工业已形成中国、美国、独联体、日本和欧洲五大生产和消费主体。

中国钛工业于1954年起步,经过试验研究、工业化生产的定点布局、应用推广和不断的技术进步逐步发展起来。特别是21世纪以来,在国家需求的拉动下,在改革开放政策的推动下,中国钛工业更是突飞猛进。

钛的强度大,纯钛抗拉强度最高可达180kg/mm2。有些钢的强度高于钛合金,但钛合金的比强度(抗拉强度和密度之比)却超过优质钢。钛合金有好的耐热强度、低温韧性和断裂韧性,故多用作飞机发动机零件和火箭、导弹结构件。钛合金还可作燃料和氧化剂的储箱以及高压容器。已有用钛合金制造自动步枪,迫击炮座板及无后座力炮的发射管。

在石油工业上主要作各种容器、反应器、热交换器、蒸馏塔、管道、泵和阀等。钛可用作电极和发电站的冷凝器以及环境污染控制装置。钛镍形状记忆合金在仪器仪表上已广泛应用。在医疗中,钛可作人造骨头和各种器具。钛还是炼钢的脱氧剂和不锈钢以及合金钢的组元。

钛白粉是颜料和油漆的良好原料。碳化钛,氢化钛是新型硬质合金材料。氮化钛颜色近于黄金,在装饰方面应用广泛。

钛和钛的合金大量用于航空工业,有”空间金属”之称;另外,在造船工业、化学工业、制造机械部件、电讯器材、硬质合金等方面有着日益广泛的应用。

此外,由于钛合金还与人体有很好的兼容性,所以钛合金还可以作人造骨。

【矿业澳洲招聘信息】澳洲矿产公司招聘在澳工作和生活的挖掘机司机和其他技术工人。详情请咨询Tony,ID:staratlas。有意者请投简历至邮箱opalme2015@gmail.com。

【人才招聘】澳洲矿产公司招聘招聘html5人才。详情请咨询Tony,ID:staratlas。有意者请投简历至邮箱opalme2015@gmail.com。

【澳洲玉矿招商信息】澳洲最大的百年玉矿,出产优质澳洲绿玉髓原石,诚招国内玉石加工厂商及玉石贸易商合作。我们只做纯天然澳洲玉石。有意者联系Tony,号:staratlas。

【澳洲矿产资源】矿业澳洲最近合作澳洲石英砂、煤炭、铁矿石、锂辉石、碳酸锂资源一手货源,请终端用户联系Tony,ID:staratlas,澳洲手机+61450651088,中国手机+8613796708565。中介勿扰。

【矿业澳洲媒体公司电子期刊征订】《矿业澳洲》整合澳洲优质矿业资源,勘察现场、审定资料、确认钻探数据,为国人提供详实可靠的矿业数据,现面向全球征订《矿业澳洲》半月刊,有意者请把您的姓名、公司、电话、邮箱地址发送到Email:  opalme2015@gmail.com,我们将定向向您发布《矿业澳洲》澳洲资源电子期刊。

【澳洲玉信息】为打造平民精品首饰,为满足国内市场对澳洲玉的强烈需求,澳洲最大的百年玉矿为客户精心准备了大量5公斤样品试用装。客户购买试用装后,样品从澳洲矿区发货,经珀斯直达国内,免运费!

澳洲矿业大公司,信誉保证,直接发货,确保无任何中间环节,直达客户手中!

澳洲玉原石,淳朴里透着精灵,有可能在原石中切出来精品中的精品!

5公斤起装,款到发货,14天到达国内主要港口!贴心实惠包装确保原石不破损!大矿澳洲技术人员严格监装!

购买详情请联系澳洲玉销售经理Kiki女士,ID:aukuang。

或联系Tony本人,ID:staratlas。

【矿山持续活动】

澳洲玉详情请持续关注新开变态私服《矿业澳洲》,《矿业澳洲》是澳洲矿业界最大的自媒体平台,精彩随时奉献给大家。自己的矿山,自己的平台。

【补充说明】澳洲玉出自澳洲,与伪专家所说的绿柱石完全不是一回事。鉴定证书可以加销售经理好友来索取。

【澳洲玉澳宝精彩文章回顾】

发现澳洲玉的灵性:如何挑选澳洲玉饰品

驯服野悍的澳洲玉:挑选澳洲玉原石

澳洲玉的灵性与野性:澳洲最大的百年玉矿

玉在全球的产状及形成

祭灶闲说澳洲玉

澳洲玉、澳宝等的技术鉴定方法

澳洲玉、玉髓,神秘的力量

澳洲玉市场调查

澳宝的鉴定和价值【原创】

《矿业澳洲》文章引用请联系Tony,请注明出自《矿业澳洲》

本文所用图片均为《矿业澳洲》与朋友们实际拍摄,无PS,盗图必究。

【澳洲资源项目】点击下面的“阅读全文”(read more),有特别好的澳洲矿业项目。

超变态私服传奇印染废水生物处理工程分析

据统计,全世界每年约有28万t纺织染料排入水体.我国纺织印染业发达,生产规模居世界首位,产生的大量印染废水不仅严重污染水环境,而且进入水体的染料及其中间代谢产物具有致癌、致突变等潜在危害;同时,水体的色度也降低了透光度,会导致水生生态系统的破坏.针对印染废水的处理,物化工艺和生化工艺的合理结合,是目前印染废水处理的最普遍方式.物化法有磁分离法、膜分离法、混凝法、吸附法、高级氧化法、光催化法等,物化法可以高效率处理印染废水,但物化法处理成本相对较高而且容易引起二次污染,比较而言生化法处理成本相对较低,而且污染物通过生物好氧代谢可以得到彻底降解.

分散染料作为聚酯纤维的主要使用染料,广泛应用于纺织印染工业.在分散染料中含偶氮结构的染料占比最大,偶氮类分散染料具有合成简单、耐日照强度高、色牢度高等特点.采用厌氧、好氧结合的生物工艺降解偶氮染料时,在厌氧条件下,偶氮染料中的偶氮键在偶氮还原酶作用下断裂导致染料脱色,而后续的好氧条件下某些非特异性酶可以将厌氧条件下产生的芳香胺进一步降解.本文即是针对一种偶氮结构的分散染料 (neocron black, NB),分别研究其在好氧、厌氧、厌氧/好氧交替条件下的生物降解特性,并通过紫外-可见分光光度计和气相色谱-质谱联用,初步推测该染料生物降解过程的中间代谢产物和生物降解途径,研究结果有助于加深对印染废水生物处理过程的认识,以期为印染废水生物处理工程设计的工艺优化提供理论依据.

1 材料与方法

1.1 实验装置

实验所用的3个序批式反应器 (R1、R2、R3) 由有机玻璃制成,其尺寸为20 cm×20 cm×35 cm,总容积14 L,反应容积10 L.其中好氧反应器R1设置搅拌装置、曝气装置和定时器;厌氧反应器R2设置搅拌装置和定时器;厌氧/好氧交替反应器R3设置搅拌装置、曝气装置和定时器,反应器厌氧8 h后曝气4 h.实验期间反应器内温度为 (28±3)℃,实验装置示意图见图 1.

  

图 1 实验装置示意

1.2 实验材料与进水组分

实验接种污泥取自上海市松江污水处理厂二沉池的活性污泥,实验前对活性污泥进行驯化.驯化和实验用模拟废水包含营养组分和不同浓度染料,营养组分如表 1;污泥开始驯化时染料浓度为20 mg ·L-1,驯化期间进水染料量以每天10 mg递增.实验期间,各反应器中污泥浓度为 (3 600±200) mg ·L-1,污泥SVI (污泥容积指数) 值为 (50±7) mL ·g-1.

  

  表 1 实验用废水营养成分组成

实验中所用的分散染料NB由J & J染料有限公司 (中国台湾) 提供,该染料属偶氮类分散染料,分子式为C21H20N6O7,相对分子质量为468.42,其结构式如图 2;NB染料水样全波段扫描最大吸收波长为600 nm.

 

图 2 Neocron black染料结构式

1.3 分析项目与方法

染料浓度的测定采用分光光度法;COD、MLSS和SVI的测定均采用标准方法;染料降解产物的测定采用气相色谱-质谱 (安捷伦GC7890B倚天私服/MS5977A) 联用法.

水样经离传世新开私服心 (6 000 r ·min-1,10 min) 后测定COD和吸光度值.进GC-MS的样轻变传奇私服品制备方法如下:水样先经离心 (6 000 r ·min-1,10 min),离心后的水样600 mL再经CH2Cl2萃取得萃取液200 mL;萃取采用美国国家环保局方法:EPA3510C分液漏斗液-液萃取,萃取过后的样品通过旋转蒸发仪蒸发至5 mL后用氮气吹脱至2 mL,浓缩后的样品进GC-MS测定降解产物. GC-MS分析条件:有机物分析采用气相色谱-质谱联机测定,检测依据为JY/T021-1996分析型气相色谱方法通则和GB/T 6041-2002质谱分析方法通则 (GC-MS),所用仪器为安捷伦GC7890B/MS5977A;色谱柱:安捷伦HP-5MSUI 30 m×0.25 mm×0.25 μm;进样量:1.0 μL;进样口温度:280℃;传输线温度:280℃;离子源温度:230℃;四极杆温度:230℃;柱温:40℃(4 min) 8℃ ·min-1 300℃(25 min);扫描方式:Scan (全扫描);扫描范围:30~1 000 u;EM电压1 079 V;MS电离方式:EI;灯丝能量:70 eV;载气种类:氦气;载气流速:1.0 mL ·min-1;定性方法:NIST2014谱库为主,部分化合物用标准化物的保留时间辅助定性.

1.4 关于生物吸附量的测定与讨论

染料在生物反应器中的去除包括生物吸附和生物降解两方面作用.分别取R1、R2、R3中的污泥混合液各500 mL置于3个800 mL烧杯中,高压蒸汽灭菌 (121℃,0.103 MPa、20 min) 后冷却至常温;3个烧杯均加入实验用染料,使烧杯中染料浓度为400 mg ·L-1. 3个烧杯中混合液分别在好氧、厌氧、厌氧/好氧条件下对染料吸附24 h后,取混合液离心后测其上清液吸光度,公式如 (1) 所示:

 

式中,η:吸收率;A:吸附后吸光度;A0:起始吸光度.

计算3种条件下污泥对染料的吸附率分别为4.28%、3.97%和4.05%;但是这并不能真实反映3个反应器中的污泥对实验染料生物吸附情况.后续实验过程中,在染料和污泥混合后的短时间内,染料即可获得良好去除效果,污泥生物吸附作用明显;究其原因,经过高压蒸汽处理后的污泥表面胞外聚合物 (EPS) 受到了破坏,其吸附性能与新鲜污泥存在显著差异.考虑到活性污泥对染料吸附作用主要发生在两者混合后的短时间内,因此本实验选择污泥和染料混合一段时间后 (1.5 h或2 h) 的污染物浓度数据进行分析,从而减少活性污泥生物吸附作用对染料去除的影响,认为反应器中染料的去除是通过微生物新陈代谢作用实现的.

2 结果与分析

2.1 反应器对废水COD和染料的去除

以特定的染料浓度 (染料浓度分别为100、200、300和400 mg ·L-1) 和表 1中的营养组分配制不同COD浓度进水,4种不同染料浓度废水的COD浓度分别为1 338、1 529、1 659和1 771 mg ·L-1,在好氧、厌氧、厌氧/好氧交替这3种实验条件下,经过12 h微生物作用后,各不同染料浓度进水在各个反应器中剩余COD浓度和染料浓度情况如图 3和图 4所示.

 

图 3 反应器对废水COD的去除

  

图 4 反应器对废水中染料的去除

图 3和图 4中,经过12h微生物作用后,4种不同COD浓度废水COD去除率在好氧条件下分别为96.7%、95.8%、92.6%、89.6%,厌氧/好氧交替条件下分别为94.5%、93.1%、89.3%、84.4%,厌氧条件下分别为79.8%、83.1%、74.3%、74.5%;染料去除率在好氧条件下分别为99.2%、98.5%、97.9%、96.4%,厌氧/好氧交替条件下分别为98.1%、97.3%、93.3%、88.9%,厌氧条件下分别为95.4%、96.1%、90.0%、79.3%.由此可见,不同NB染料配比浓度废水的COD和染料均是在好氧条件下降解效率最高,厌氧/好氧交替条件次之,厌氧条件下染料降解效率最低;而在同一反应器中,随着染料浓度的增加,微生物对废水COD和染料的降解效率逐渐下降.

对于印染废水,一般来说,厌氧/好氧交替更应该有利于微生物对废水色度 (染料) 的去除,厌氧环境有利于某些还原类酶的生成和作用,而好氧曝气可以提供充足的电子受体和受氢体,有利于将有机物彻底矿化分解.本实验在好氧条件下反应器对NB染料的降解效率最高,可能的原因有二,其一是该分散染料的相对分子量较小,容易进入细胞膜,同时也没有增加生物降解难度的基团 (如磺酸基、羧基等),本身较易生物降解,其二是在曝气池中存在大量厌氧微环境,菌胶团内部处于厌氧状态,微生物可以产生大量还原类酶. NB染料结构上以苯环为主要架构,含有偶氮双键和其它含氮基团,代谢时会产生大量苯胺类物质,这类物质对微生物具有强烈抑制作用,并在反应器中累积,而且随着染料浓度的增加,包括染料本身和其某些中间代谢产物在废水中累积也就越多,从而抑制了微生物活性,并最终表现为反应器对COD和染料去除效率的下降;Hakimelahi等利用微生物降解偶氮染料也获得类似实验结果.

2.2 不同曝气条件对NB染料降解的影响

图 5为NB染料浓度为400 mg ·L-1、COD浓度为1 771 mg ·L-1废水在好氧、厌氧、厌氧/好氧这3种实验条件下24 h生物降解过程中NB染料的浓度变化情况.为便于分析,结合厌氧/好氧反应器的厌氧和好氧交替周期,把整个实验过程分为4个阶段,具体见图 5.

  

图 5 染料在好氧、厌氧、厌氧/好氧交替条件下的浓度变化对比

由图 5可见,在染料和污泥混合后的一段时间内,污泥的生物吸附作用依然明显,在生物吸附和生物降解共同作用下,在前1.5 h内 (即第一阶段的前1.5 h) NB染料由实验开始时候的400 mg ·L-1迅速降低,在该时间段好氧条件下NB染料去除率最低,厌氧/好氧条件次之 (实际处于厌氧状态),厌氧条件下最高;在1.5~8 h之间 (依然属于第一阶段;可以认为从该阶段开始,染料浓度的降低是通过生物降解作用实现的),NB染料在好氧条件下降解速率最高 (好氧条件下反应器对染料降解符合一级反应动力学,速率常数K1R1=0.369 h-1,R2=0.968),厌氧/好氧交替次之[厌氧/好氧交替反应器在该时段实际处于厌氧状态,微生物对染料降解符合零级反应动力学,速率常数K1R2=8.18 mg ·(L ·h)-1,R2=0.989],厌氧反应器最低[厌氧反应器对染料降解符合零级反应动力学,速率常数K1R3=6.06 mg ·(L ·h)-1,R2=0.990].在8~12 h之间 (即第二阶段),厌氧/好氧交替反应器开始曝气,该反应器中NB染料降解率最高,厌氧反应器次之,好氧反应器最低[在此阶段,3种反应器对染料降解均符合零级反应动力网通变态传奇私服学,速率常数分别为K2R3=15.02 mg ·(L ·h)-1,R2=0.969;K2R2=3.62 mg ·(L ·h)-1,R2=0.993;K2R1=1.15 mg ·(L ·h)-1,R2=0.979].在12~20 h阶段 (即第三阶段),厌氧和好氧条件下NB染料降解速率变化不大,而厌氧/好氧交替反应器重新进入到厌氧状态,染料降解速率下降明显.在20~24 h阶段 (即第四阶段),3种反应器中染料的降解速率均较前一阶段降低,染料的生物降解作用基本停滞.

在染料降解的前1.5 h时段,反应器在厌氧条件下 (厌氧/好氧交替反应器也是处于厌氧状态) 对染料的去除效果优于好氧条件,厌氧条件产生的还原类酶在染料前期降解过程中起到关键作用.在前8 h时段中,厌氧/好氧交替条件实际处于厌氧状态,之所以出现该条件下对染料去除效率高于厌氧条件时的现象.可能的原因有二:其一是厌氧/好氧交替系统始于前一组实验的好氧处理,虽然本组实验开始前3组反应器污泥均经过清水洗涤和一天的静置,但是总体上经过好氧曝气后的污泥中残留剩余染料要少于厌氧系统,因此厌氧/好氧交替系统在厌氧阶段的染料浓度比厌氧反应器中更低;其二是经过厌氧/好氧交替作用的微生物处于更低浓度的基质中,对新加入代谢基质也表现出更强代谢能力.进入第三阶段以后,随着系统内易生物降解物质的逐渐消耗和难生物降解物质的大量累积,微生物代谢速度随之降低,在第四阶段甚至出现停滞.总体上讲,厌氧生物处理对于NB染料的降解至关重要,而好氧条件也加速了后续生物降解速度.有研究发现,某些微生物在好氧条件下能使偶氮键断裂,同时染料偶氮键断裂生成的芳香胺在好氧条件下更易降解,这些因素均会对NB染料的生物降解过程具有促进作用.

2.3 外加碳源对NB染料降解速率的影响

图 6为染料浓度为200 mg ·L-1废水,在R1、R2、R3反应器中,分别在有外加碳源 (按照表 1中的营养配比,废水COD为1 529 mg ·L-1) 和无外加碳源条件下 (仅有NB染料作为碳源)12h生物降解过程中染料浓度变化情况对比,其中R1好氧12h、R2厌氧12h、R3厌氧8 h+好氧4 h.

 

图 6 外加碳源对NB染料降解的影响

从图 6可以看出,在好氧、厌氧、厌氧/好氧条件下,在12 h的染料降解过程中,有外加碳源时NB染料去除率均高于无加外加碳源时的去除率,有外加碳源时R1中12 h脱色率为98.5%,无外加碳源时92.3%;有外加碳源时R2中12 h脱色率为96.1%,无外加碳源时81.0%;有外加碳源时R3中12 h脱色率为97.3%,无外加碳源时88.5%.根据图 6中不同时间点对应的染料浓度分析,有外加碳源条件下,在2 h以后微生物对染料降解符合零级反应动力学,R1、R2、R3反应器对NB染料降解动力学速率常数分别为0.458、0.820和0.784 mg ·(L ·h)-1(R2迷失传奇发布网分别为0.971、0.954、0.948),在无外加碳源条件下,在2 h以后微生物对染料降解符合一级反应动力学,R1、R2、R3反应器的动力学速率常数分别为0.105、0.040和0.063 h-1(R2分别为0.967、0.900、0.966).外加葡萄糖对NB染料的生物降解具有促进作用,并改变了该染料生物降解的动力学特征,易生物降解物质在偶氮染料降解过程中为微生物代谢提供了优质的代谢基质,微生物处于良好能量状态,通过共代谢作用加速了染料降解进程.

对比有外加葡萄糖条件下2 h后染料降解动力学参数,染料降解速率常数在好氧条件下最低,在厌氧条件下反而最高,这似乎与前面的实验结果相矛盾;实际上,在有外加碳源条件下2 h时染料的大部分已经实现了初步生物降解,而且好氧条件下的降解效率最高,厌氧/好氧交替条件次之,厌氧条件下最低,2 h以后的生物降解过程更接近在反应器中有大量中间代谢产物积累、而外加碳源基本逐渐代谢完毕时的情况 (特别是好氧条件下).与图 5中NB染料起始浓度为400 mg ·L-1条件下的降解动力学参数相比较 (有外加碳源),不同起始浓度染料的生物降解动力学特性和动力学参数也存在较大差别,染料生物降解过程是个复杂的系列反应,特别是随着对微生物具有强烈抑制作用中间代谢产物的逐渐生成和积累,仅仅体现染料发色基团受到破坏的染料降解动力学特性受到诸如中间代谢产物浓度、剩余外加碳源等诸多因素影响.

总体上讲,在实验的12 h内,不同曝气条下有外加碳源时NB染料降解情况和无外加碳源时类似,均是厌氧条件降解速率最小,厌氧/好氧条件次之,好氧条件最大.由此可见,外加碳源通过共代谢作用改善了NB染料的生物降解性能,但是如2.1节所论述的原因,相对分子质量较小的NB染料在外加碳源条件下,依然是在有氧条件下生物降解速率最大

2.4 NB染料降解生物降解过程分析

NB染料浓度为400 mg ·L-1,在有外加碳源条件下,染料在R1、R2、R3反应器中24 h生物降解过程全波段紫外光谱如图 7所示.

  

图 7 染料降解过程全波段光谱图

分散染料NB呈蓝黑色,其最大吸收波长在600 nm左右.由图 7可见,在染料色生物降解过程中,在200~350 nm区间,3个反应器的波谱形状类似、波谱面积相近,苯环、不饱和烃和共轭烯烃在250 nm左右均存在较强特征峰,推测在244 nm左右处出现波峰的物质包含上述几种物质,这类物质在实验过程中波谱形状和大小没有较大变化,意味实验条件下此类物质始终未得到充分降解;联系反应器对废水COD的降解效率,经过24 h的生物降解,废水中的大部分污染物逐渐被去除,盛大传奇私服紫外光谱中体现出的此类污染物保持较稳定的浓度,可能是此类污染物在实验条件下的平衡浓度.在可见光区域 (400~700 nm),3个反应器中波谱形状相似,而且随着生物降解时间的延长,染料最大吸收波长处的波峰均明显降低,染料偶氮双键发色基团得到了充分降解,NB染料获得了较高的生物降解效率;比较而言,经过24 h生物降解,R1反应器中染料降解率最高,R2反应器次之,R3反应器最低.再比较3 h和6 h的波谱,好氧条件下偶氮双键的降解效率最低,远低于厌氧条件下的降解速度 (厌氧/好氧交替此时也是处于厌氧状态),说明了厌氧环境对于偶氮染料生物降解的重要作用.

2.5 染料降解中间产物分析

对NB染料生物降解过程的产物进行GC-MS分析,根据GC-MS实验结果和相关报道,推测NB染料可能的一种生物降解路径.

图 8显示了NB分子一种可能的生物降解路径.由于NB染料是一种结构简单、单偶氮键的偶氮染料,其易被生物降解、且降解路径相对较简单.首先NB染料中偶氮键在偶氮还原酶的催化作用下断裂生成 (S1) 2,4-二硝基苯胺和 (S6) 2-氰基-4-硝基苯胺两种芳香胺化合物,根据GC-MS测得数据分析,这两种苯胺类新开传奇网站物质在微生物进一步的作用下继续降解.在S1的降解路径中,首先S1通过还原反应生成S2(4-甲氧基-2-硝基苯胺),然后S2通过脱氨基作用生成S3(3-硝基苯甲醚),而S3又通过水解和取代反应生成更加稳定的中间代谢产物S4(3-羟基苯甲酸),S4在微生物的作用下苯环解环生成不饱和脂肪酸S5(顺-2-羟基-1, 4-丁烯二酸),最终S5被完全降解生成CO2和H2O,实现染料的完全降解;同样地,S6也有类似的降解路径. S6通过脱氰基反应生成S7(对硝基苯胺),后S7通过水解反应脱去氨基和硝基生成S8(4-甲基苯酚),而又根据文献的研究结果,推测S8生成S9(对羟基苯酚),S9通过氧化反应生成S10(对羰基环己二烯),后S10通过苯环解环生成不饱和脂肪酸S11(1, 4-丁烯二酸),最终S11被完全降解生成CO2和H2O,同样实现染料的完全降解。

  

图 8 染料可能的生物降解路径

3 结论

(1) NB染料的生物降解效率,好氧条件下最高,厌氧/好氧交替条件次之,厌氧条件下染料降解效率最低;在同一反应器中,随着染料浓度的增加,微生物对NB染料的降解效率逐渐下降.厌氧条件对于NB染料的降解至关重要,而好氧条件加速了染料代谢产物的生物降解进程.

(2) 染料生物降解的动力学特性受到曝气形式、染料浓度和外加碳源的影响,外加碳源对NB染料的生物降解具有促进作用.在染料浓度为200 mg ·L-1、有外加碳源条件下,2 h后微生物对染料降解为零级反应,在无外加碳源条件下,2 h后微生物对染料降解为一级反应.

(3) 不同实验条件下,NB染料偶氮双键发色基团均得到充分降解,但是在反应器中始终有苯环、不饱今日新开传世私服和烃和共轭烯烃等未得到充分降解. NB偶氮染料生物降解先从偶氮双键断裂,之后生成芳香胺,芳香胺再通过一系列生物降解作用,最终开环直至被完全生物降解.

– END –

编辑 | 月半

申明:文章内容来自( 水博网)版权归原作者所有,如需转载,请与我们联系或标明来源。如有问题,请与我们联系删除。

好东西得分享哦!

回复“资料”即可进入“水处理资料库”,根据网盘资料分类进项选择、查看、下载学习即可!

内容列别↓↓↓:

1.《城市污水厂处理设施设计计算》(崔玉川等编著)

2.《氧化沟污水处理理论与技术》邓荣森 (第一版)

3.《环境工程微生物》

4.《给排水设计手册全》

 《(第01册)常用资料》

 《(第02册)建筑给排水》

 《(第03册)城镇给水》

 《(第04册)工业给水处理》

 《(第05册)给排水设计手册》

 《(第06册)工业排水》

 《给排水(专业课)考试》

 《给排水规范大全》

 《给排水规范分享》

 《给排水规范》

 《给排水设计图纸10套》

 《国内某著名甲级设计院设计图纸10套【第一部分】(建筑+给排水)》
 《注册公用设备工程师(给排水)公共基础考试视频教程(共133课)》

5.《污水处理厂》

 《某污水处理厂总调试方案》
 《某污水处理厂施工方案(超详细)》

 《杭州拓泽流体,100L超纯水系统》

 《某50000吨每天污水处理厂设计方案》

传奇私服 网通 《晋江某污水处理厂升级改造》

 《某污水处理厂升级改造》

 《佛山市某污水处理厂初步设计方案(含全套图)》

6.《垃圾渗滤液处理技术合集》

 《垃圾渗滤液处理技术及工程实例》

 《垃圾渗滤液处理方案(第一版)》

 《一种用于深度处理垃圾渗滤液的方法》

 《双膜系统软化计算》

 《纺织印染废水处理合集》

 《中水回用资料》

 《MBR膜资料》

 《迁安中化PID》

 《超滤反渗透全套施工图》

 《100吨每天膜生物反应器技术方案》

7.《城市污水厂处理设施设计计算(第2版)》 —— 崔玉川

8.《净水厂、污水厂工艺与设备手册》 杭世珺 

9.《水处理工程常用设备与工艺》 蒋克彬

 《大气处理各类计算手册》

 《生物化工废水处理技术及工程实例-环境工程实例丛书》

 《水处理工程常用设备与工艺》

 《污水处理指示性微生物图谱》

 《水处理快速设计工具箱》

10.《制药废水》

 《制药废水处理技术及工程实例》

 《传奇私服123制药废水预处理方法的研究进展》

11.《造纸工业废水处理技术及工程实例》

12.《食品工业生产废水处理工艺及工程实例》

13.《冶金工业废水处理技术及工程实例》

14.《水处理高级氧化技术》

15.《有机废水(2004版)》

16.《生物化工废水处理技术及工程实例》

17.《污水处理指示性微生物图谱》

18.《MBR内部培训资料》

19.《黄霞老师MBR一体化》

20.《水处理高级氧化技术》

21.《纺织印染工业废水治理技术(2002版)》

22.《海德能》

23.《建筑设计软件、规范》

24.《超详细的农村生活污水处理教材》

25.《威立雅-Smedi seminar Sept 2008》

26.《环保规范》

 《水环境质量标准》

 《相关监测规范、方法标准》

 《水污染物排放标准》

………….